Previous month Previous day Next day Next month
By Year By Month By Week Today Search Jump to month
PDEs: Italia vs España
PDEs: Italia vs España
Jueves 6 de mayo, 15 - 17 horas.

Alessandro Audrito (University of Zurich).

Título: Boundary regularity of solutions to some nonlocal elliptic Neumann
problems.
Abstract: I will present some recent results concerning the regularity up to the
boundary of solutions to the Neumann problem for the fractional
Laplacian: if u is a weak solution to (−∆)^su = f in Ω, N_su = 0 in Ω^c,
then u is C^α up to the boundary for some α ∈ (0, 1). Moreover, if s >
1/2, then u ∈ C^2s−1+α(Ω).
This is a joint work with J.-C. Felipe-Navarro (UPC) and X. Ros-Oton (UB).

Azahara de la Torre (Universidad de Granada).

Título: From Conformal Geometry to the study of elliptic PDEs.
Abstract: The so called Yamabe problem in Conformal Geometry is finding a metric

conformal to a given one and which has constant scalar curvature. From
the analytic point of view, this problem becomes a semilinear elliptic
PDE with critical (for the Sobolev embedding) power non-linearity. If we
study the problem in the Euclidean space, allowing the presence of
nonzero-dimensional singularities can be transformed into reducing the
non-linearity to a Sobolev-subcritical power. A quite recent notion of
non-local curvature gives rise to a parallel study which weakens the
geometric assumptions giving rise to a non-local semilinear elliptic
(Sobolev-critical) PDE.
In this talk, we will focus on the Euclidean space in the presence of
singularities of maximal possible dimension. In both cases, local and
non-local, we will construct singular solutions of a local/non-local
semilinear elliptic equation with superlinear nonlinearity which is
subritical for Sobolev embeddings, but it is critical for the existence
of singular solutions (below such threshold the singularity is removable).
This is a joint work with H. Chan.



Zoom link: https://uniroma1.zoom.us/j/87961090612?pwd=clZHOUhNbFAvVDE2eWRuM3MxZE02dz09

Webpage: https://sites.google.com/view/pdesespanaitalia.
-------------------------------------------------------------------------------------------------