Seminario: Prelectura de Tesis
Ponente: Jesús Ocáriz Gallego
Director: Antonio Córdoba Barba
Título: Minimal Surfaces and Splitting Results on Riemannian Manifolds. Duality and Approximation in Variable Lebesgue Spaces.
Fecha: 26 de Octubre de 2020, 10:30
Lugar: ONLINE-mediante una reunión virtual en el equipo de Microsoft
Teams titulado “Prelectura tesis Jesús Ocáriz".
Si no sois miembros del equipo y queréis asistir, por favor escribid por email a
Abstract: In this thesis, we solve four different problems of interdisciplinary nature using two different types of techniques: one of them concerning the analysis of partial differential equations and the other, functional analysis. More specifically, we address the following questions:
- What are the sufficient and necessary hypotheses so that a hypersurface is the set of discontinuities of a generalized harmonic function?
- What are the geometric implications of achieving equality at Modica's estimate or its generalizations in Riemannian manifolds?
- What is the dual of a variable Lebesgue space whose exponent function is unbounded?
- Does the property of universal approximation of neural networks hold to approximate functions belonging to variable Lebesgue spaces?