Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
SEMINARIO DE TEORÍA DE NÚMEROS

SEMINARIO DE TEORÍA DE NÚMEROS

STRONG SIDON SEQUENCES

SPEAKER: Juanjo Rué (UPC)

DATE & TIME: Tuesday, May 25th, 2021 - 12:30 !!!!!!!!!!!!!!!


ABSTRACT: A set of integers $S subset N$ is an $alpha$--strong Sidon set if the pairwise sums of its elements are far apart by a certain measure depending on $alpha$, more specifically if
%
$$
big| (x+w) - (y+z) big| geq max { x^{alpha},y^{alpha},z^{alpha},w^alpha }
$$
%
for every $x,y,z,w in S$ satisfying $max {x,w}
eq max {y,z}$. We obtain a new lower bound for the growth of $alpha$--strong infinite Sidon sets when $0 leq alpha < 1$. We also further extend that notion in a natural way by obtaining the first non-trivial bound for $alpha$--strong infinite $B_h$ sets. In both cases, we study the implications of these bounds for the density of, respectively, the largest Sidon or $B_h$ set contained in a random infinite subset of $N$. Our theorems improve on previous results by Kohayakawa, Lee, Moreira and R"odl.

This is a joint work with David Fabian (FU Berlin) and Christoph Spiegel (ZIB Berlin)

Localización DATE & TIME: Tuesday, May 25th, 2021 - 12:30 !!!!!!!!!!!!!!!